Reference List — H.Mk.0 Internal Design Paper

This is the comprehensive reference list, most but not all have been skimmed through and archived as they support the notes and references in the ever growing detailed literature review in the technology knowledge document. As of 220415 that knowledge base is over 75k words of peer reviewed reference notes and there are several dense physical textbooks which haven’t made it in yet. Some hotlinks are included from recent research reading though all articles will be linked eventually.

  1. Abrikosov, A A, 2004. Nobel lecture: Type-II superconductors and the vortex lattice.
  2. Abrikosov, A A, 1957. On the magnetic properties of superconductors of the second type.
  3. Ageyev, A I, Andreev, N I, Balbekov, V I, Dolzhenkov, V I, Gertsev, K F, Gridasov, V I, Myznikov, K P, Smirnov, N L, Sychev, V A, Sytnik, V V, Tarakanov, N M, Tkachenko, L M, Vasiliev, L M, Zinchenko, S I & Zlobin, A V, 1992. The development and study of superconducting magnets for the UNK.
  4. Ageyev, A I, Balbekov, V I, Dmitrevsky, Y P, Dunaitsev, A F, Fedotov, Y S,Gridasov, V I, Komarov, V V, Kurnayev, O V, Lebedev, V N, Logunov, A A, Myznikov, K P, Naumov, A A, Rogozinsky, V G, Shembel, B K, Soloviev, L D, Tarakanov, N M, Yarba, V A, Artemov, A D, Dinaburg, L D, Glukhikh, V A, Gusev, O A, Karasev, V G, Kosyakin, M N, Malyshev, I F, Monoszon, N A, Mozalevsky, I A, Mozin, I V, Peregud, V I, Titov, V A, Vasiliev, S N, Gyul’khandanyan, A M, Makeyev, E L, Shiryaev, F Z, Vasiliev, A N, Vorontsov, G P, Kuz’min, A A, Vagin, A I, Yelyan, V V, Belyakov, V P, Butkievich, I K, Filin, N V, Grigorehko, N M, Kovalenko, V D & Morkovkin, I M, 1980. The IHEP accelerating and storage complex (UNK) status report.
  5. Aguglia, D, 2013. Pulse transformer design for magnet powering in particle accelerators.
  6. Aguglia, D, Cravero, J, Rebeschini, R, Iovieno, S & Russo, C, 2015. Design Solutions for Compact High Current Pulse Transformers for Particle Accelerators’ Magnet Powering.
  7. Aird, G, Simkin, J, Taylor, S, Trowbridge, C, Xu, E, 2006. Coupled transient thermal and electromagnetic finite element simulation of quench in superconducting magnets.
  8. Akihama, R, Yasukochi, K & Ogasawara, T, 1977. The effects of indium addition on the properties of internal tin diffusion processed Nb3Sn wires.
  9. Alekseev, P A, Boev, A I, Keilin, V E, Kovalev, I A, Kruglov, S L, Lazukov, V N & Sadikov, I P, 2004. Experimental evidence of considerable stability increase in superconducting windings with extremely high specific heat substances.
  10. Alekseev, P A, Boev, A I, Keilin, V E, , Kovalev, I A, Kozub, S S, Kruglov, S L, Lazukov, V N & Sadikov, I P, 2005. Considerable stability increase in superconducting windings doped with extremely high specific heat substances.
  11. Alekseev, P A, Boev, A I, Keilin, V E, Kovalev, I A, Kozub, S S, Kostrov, E A, Kruglov, S L, Lazukov, V N, Sadikov, I P, Shutova, D I, 2006. Influence of high heat capacity substances doping on quench currents of fast ramped superconducting oval windings.
  12. Alekseev, P A, Keilin, V E, Kovalev, I A, Kruglov, S L, Lazukov, V N, Medvedev, M I & Shutova, D I, 2007. Investigation of considerable stability increase of composite superconductors doped with extremely large heat capacity substances.
  13. Algarni, A, Gleason, F & Mohanakumaran, A, 2014. Electromagnetic Ring Launcher.
  14. Ali, A, Ali, H, Mughal M & Reyneri, L, 2012. Components selection for a simple boost converter on the basis of power loss analysis.
  15. Allen, J & Misener, A, 1938. Flow of liquid Helium II.
  16. Al Sakka, M, Gualous, H, Van Mierlo, J, Culcu, H, 2009. Thermal modeling and heat management of supercapacitor modules for vehicle applications.
  17. Ambrosio, G, 2015. Nb3Sn High Field Magnets for the High Luminosity LHC Upgrade Project.
  18. Anderson, P W, 1962. Theory of flux creep in hard superconductors.
  19. Anerella, M, Cottingham, J, Cozzolino, J, Dahl, P, Elisman, Y, Escallier, J, Foelsche, H, Ganetis, G, Farber, M, Ghosh, A, Goodzeit, C, Greene, A, Gupta, R C, Harrison, M, Herrera, J, Jain, A, Khan, S, Kelly, E, Killian, E, Lindner, M, Louie, W, Marone, A, Morgan, G, Morgillo, A, Mulhall, S, Muratore, J, Plate, S, Prodell, A, Rehak, M, Rohrer, E, Sampson, W, Schmalzle, J, Schneider, W, Shutt, R, Sintchak, G, Skaritka, J, Thomas, R, Thompson, P, Wanderer, P J & Willen, E, 2003. The RHIC magnet system.
  20. Anouti, M, Couadou, E, Timperman , L, Galiano, H, 2012. Protic ionic liquid as electrolyte for high-densities electrochemical double layer capacitors with activated carbon electrode material.
  21. Ašner, F M, 1999. High field superconducting magnets.
  22. Baba, J, Nitta, T, Shirai, Y, Akita, S, Hayashi, Y & Kobayashi, Y, 2001. Power Converter for SMES by use of ICB energy transfer circuit.
  23. Bacon, J, Ammerman, C, Coe, H, Ellis, G, Lesch, B, Sims, J, Schillig, J & Swenson, C, 2002. The US NHMFL 100 Tesla multishot magnet.
  24. Balducci, A, Dugas, R, Taberna, P, Simon, P, Plee, D, Mastragostino, M & Passerini, S, 2007. High Temperature Carbon-Carbon Supercapacitor Using Ionic Liquid As Electrolyte.
  25. Barzi, E, Andreev, N, Karppinen, M, Lombardo, V, Nobrega, F, Turrioni, D, Yamada, R & Zlobin, A V, 2012. Development and Fabrication of Nb3Sn Rutherford Cable for the 11 T DS Dipole Demonstrator Model.
  26. Barzi, E, Zlobin, A V, 2016. Research and Development of Nb3Sn Wires and Cables for High-Field Accelerator Magnets.
  27. Bednorz, J G & Müller, K A, 1986. Possible High Tc Superconductivity in the Ba-La-Cu-O System.
  28. Bennemann, K H & Ketterson, J B, eds, 2003. The Physics of Superconductors.
  29. Benvenuti, C, 1983. A new pumping approach for the large electron positron collider (LEP).
  30. Beth, R, 1966. Complex representation and computation of two-dimensional fields.
  31. Beth, R, 1967. An integral formula for two-dimensional fields.
  32. Binns, K, Lawrenson, P & Trowbridge, C, 1992. The analytical and numerical solutions of electric and magnetic fields.
  33. Bird, M, Gavrilin, A, Gundlach, S, Han, K, Swenson, C & Eyssa, Y, 2006. Design & Testing of a repetitively pulsed magnet for neutron scattering.
  34. Boattini, F & Genton, C, 2015. Accelerated lifetime testing of energy storage capacitors used in particle accelerator power converters.
  35. Bogdanov, I, Chirkov, P, Keilin, V, Kozub, S, Shcherbakov, P, Slabod- chikov, P, Sytnik, V, Tkachenko, L M, Zintchenko, S & Zubko, V, 2004. Final Report on the Research and Development Contract: Design of 6T Su- perconducting Dipoles for SIS 300.
  36. Boom, F & Livingstone, R, 1962. Proceedings of IRE.
  37. Borthomieu, Y, Prevot, D & Massot, J, 2011. VES100/140 Lithium-Ion Cells LEO Life-Test Results & Proteus Flight Heritage.
  38. Borthomieu, Y, 2014. Satellite Lithium-Ion Batteries.
  39. Bortis, D, Biela, J & Kolar, J, 2007. Optimal design of a DC reset circuit for pulse transformers.
  40. Bortis, D, Biela, J & Kolar, J, 2008. Design and control of an active reset circuit for pulse transformers.
  41. Bottura, L, 1999. A practical fit for the critical surface of NbTi.
  42. Bragin, A, Khrushchev, S, Kubarev, V, Mezencev, N, Tsukanov, V, Sozinov, G, Shkaruba, V, 2016. Superconducting solenoid for superfast Thz spectroscopy.
  43. Brandt, B, Hannahs, S, Schneider-Muntau, H, Boebinger, G & Sullivan, N, 2001. The national high magnetic field laboratory.
  44. Brunk, W & Walz, D, 1975. A new pulse magnet design utilising tape wound cores.
  45. Buehler, W & Levinstein, H J, 1965. Effect of tensile stress on the transition temperature and current-carrying capacity of Nb3Sn.
  46. Burgess, P, 2009. Variation in Light intensity at different latitudes and seasons, effects of cloud cover and the amounts of direct and diffused light.
  47. Buta, T, 2015. The research of the mechanical characteristic of polyimide foil.
  48. Cabanes, J, Garlasche, M, Bordini, B & Dallocchio, A, 2016. Simulation Of The Cabling Process for Rutherford cables: An advanced finite element model.
  49. Cambell, 2011. An introduction to Numerical Methods in Superconductors.
  50. Castric, A F, Lawson, S & Borthomieu, Y, 2011. High energy lithium-ion VES cells and batteries performance.
  51. Chaboche J L, 1989. Constitutive equations for cyclic plasticity and cyclic viscoplasticity.
  52. Chang, H & Wang, L , 2010. A Simple Proof of Thue’s Theorem on Circle Packing.
  53. Chao, C & Grantham, C, 2006. Design Optimisation for a Superconducting Solenoid of High Temperature Superconductor Tape for Energy Storage Purposes.
  54. Chao, C & Grantham, C, 2004. Iron Cored High Temperature Superconducting inductors for large Electric Power Applications.
  55. Charifoulline, Z, 2006. Residual resistivity ratio (RRR) measurements of LHC superconducting NbTi cable strands.
  56. Cheggour, N & Hampshire, D P, 1999. Unifying the strain and temperature scaling laws for the pinning force density in superconducting niobium-tin multifilamentary wires.
  57. Cheggour, N & Hampshire, D P, 2002. The unified strain and temperature scaling law for the pinning force density of bronze-route Nb3Sn wires in high magnetic fields.
  58. Chen, W & Saleeb, A, 1994. Constitutive Equations for Engineering Materials, Volume II: Plasticity and Modelling.
  59. Cho, H, Kim, C, Lee, J & Han, H, 2011. Design and characteristic analysis of small scale magnetic levitation and propulsion system for maglev train application.
  60. Choi, J, Kim, S K, Kim, S, Sim, K, Park, M, & Yu, I K, 2016. Simulation and Experimental Demonstration of a Large Scale HTS AC Induction Furnace for Practical Design.
  61. Coccoli M, Scanlan RM, Calvi M, Caspi S, Chiesa L, Hafalia R, Higley, H C, Dietderich, D R, Gourlay, S A, Lietzke, A, McInturff, A D & Sabbi, G, 2004. Fabrication and Performance of Nb3Sn Rutherford-Type Cable With Cu Added as a Separate Component.
  62. Cohon, J, 1978. Multiobjective programming and planning.
  63. Conway, B, 1999. Electrochemical supercapacitors: Scientific Fundamentals And Technological Applications.
  64. Cooley, L D, Fischer, C M, Lee, P J, & Larbalestier, D C, 2004. Simulations of the effects of tin-composition gradients on the superconducting properties of Nb3Sn conductors.
  65. Cravero, J, Maire, G & Royer, J, 2007. High current capacitor discharge power converters for the magnetic lenses of a neutrino beam facility.
  66. Dahlerup-Peterson, K, Kazmine, B, Popov, V, Sytchev, L, Vassiliev, L, Zubko, V, 2000. Energy Extraction Resistors for the Main Dipole and Quadrupole Circuits of the LHC.
  67. Denz, R, Rodriguez-Mateos, F, 2001. Detection of Resistive Transitions in LHC Superconducting Components.
  68. Devered, A, Bredy, P, Durante, M, Gourdin, C, Rey, JM & Reytier, M, 1999. Insulation systems for Nb3Sn accelerator magnet coils fabricated by the “wind and react” technique.
  69. de Gennes, P G, 1966. Superconductivity of Metals and Alloys.
  70. Ding, H, Ding, T, Jiang, C, Xu, Y, Xiao, H, Li, L, Duan, X & Pan, Y, 2010. Design of Power Supplies for the Pulsed High Magnetic Field Facility at HUST.
  71. Ding, H, Jiang, X, Ding, T, Xu, Y, Li, L, Duan, X, Pan, Y & Herlach, F, 2010. Prototype test and manufacture of a modular 12.5 MJ capacitive pulsed power supply.
  72. Ding, H, Hu, J, Liu, W, Xu, Y, Jiang, C, Ding, T, Xianzhong, D & Pan, Y, 2012. Design of a 135 MW Power Supply for a 50 T Pulsed Magnet.
  73. Ding, H, Jiang, C, Xu, Y, Ding, T, Zou, X, Li, L & Pan, Y, 2013. Test and operation of the WHMFC 12.6 MJ capacitor bank power supply systems.
  74. Ding, H, Yuan, Y, Xu, Y, Jiang, C, Li, L, Duan, X, Pan, Y & Hu, J, 2014. Testing and commissioning of a 135 MW pulsed power supply at the Wuhan National High Magnetic Field Centre.
  75. Ding, H, Ren, T, Xu, Y, Ding, T, Zhao, Z, Peng, T, Li, L, & Hu, J, 2016. Design and analysis of power supplies for the first 100T nondestructive magnet at the WHMFC.
  76. Ding, H, Zhao, Z, Zhou, J, Xie, J, Shi, J, Huan, Y, Wang, J, Wang, Q & Li, L, 2017. A flexible capacitive pulsed power supply to the high magnetic fields for the magnetisation measurement.
  77. Ding, H, Zhao, Z, Jiang, C, Xu, Y, Ding, T, Fang, X, Ren, T, Li, L, Pan, Y & Peng, T, 2018. Construction and Test of Three-Coil Magnet Power Supply System for a High-Pulsed Magnetic Field.
  78. Ding, T, Wang, J, Ding, H, Li, L, Liu, B & Pan, Y, 2012. A 35 kA disc-shaped thyristor DC switch for batteries power supply of flat-top pulsed magnetic field.
  79. Ding, T, Lv, Y, Tang, J, chen, X, Li, L & Pan, Y, 2013. The design and tests of battery power supply system for pulsed flat top magnets in WHMFC.
  80. Ding, T, Ma, Y, Chen, H, Lv, Y, Han, X, Li, L & Pan, Y, 2014. Analysis & experiment of battery bank power supply system for long pulse helical magnet in WHMFC.
  81. Dixon, I R, Markiewicz, W D, Pickard, K W & Swenson, C A, 1999. Critical current and n-value Nb3Sn conductors for the wide bore 900 MHz.
  82. Dolara, A, Faranda, R & Leva, S, 2009. Energy comparison of seven MPPT techniques for PV systems.
  83. Drost, E, Specking, W & Flükiger, R, 1985. Comparison of superconducting properties and residual resistivities of bronze processed Nb3Sn wires with Ta, Ti and Ni + Zn additives.
  84. Dudley, G, Hendel, B & Borthomieu, Y, 2011. GEO and LEO life tests of SAFT lithium ion batteries after ten years of cycling.
  85. Dunlop, J D, Rao, M & Yi, T, 1993. NASA Handbook for Nickel Hydrogen Batteries.
  86. Edwards, J, 1983. Exploring Electricity & Electronics With Projects.
  87. Edwards, H T, 1985. The Tevatron energy doubler: a superconducting accelerator.
  88. Ekin, J W, 1977. Mechanisms for critical-current degradation in NbTi and Nb3Sn multifilamentary wires.
  89. Ekin, J W, 1980. Strain scaling law for flux pinning in practical superconductors. Part 1: Basic relationship and application to Nb3Sn conductors.
  90. Ekin, J W, 1981. Strain scaling law for flux pinning in Nbti, Nb3Sn, Nb-Hf/Cu-Sn-Ga, V3Ga and Nb3Ge.
  91. Ekin, J W, 1984. Strain effects in superconducting compounds.
  92. Elekes, G, 2020. Stress Analysis of High Field Nb3Sn Accelerator Magnets During Thermal Transients.
  93. Elen, J D, van Beijnen, C A M & van der Klein, C A M, 1977. Multifilament V3Ga and Nb3Sn superconductors produced by the ECN-technique.
  94. Energizer, accessed: 2022. Energizer NH15–2300 (HR6) Product Data Sheet.
  95. Evans, L & Bryant, P, 2008. LHC machine.
  96. Evetts, J E, ed, 1992. Concise encyclopedia of magnetic & superconducting materials.
  97. Eyssa, Y, Markiewicz, W & Pernambuco-Wise, P, 1995. Plastic stress analysis of pulse and resistive magnets.
  98. Eyssa, Y & Pernambuco-Wise, P, 1995. Electrical, Thermal and Mechanical Modeling of Pulsed Magnets.
  99. Eyssa, Y, Walsh, R, Miller, J, Pernambuco-Wise, P, Bird, M, Schneider-Muntau, H, Boeing, H & Robinson, R, 1997. 25–30T water cooled pulsed magnet concept for neutron scattering experiment.
  100. Eyssa, Y, Walsh, R, Miller, J, Pernambuco-Wise, P, Bird, M & Schneider-Muntau, H, 1998. 2 Hz, 30 T Split Pulse Water Cooled Magnet for Neutron Scattering Experiments.
  101. Fabry, C, 1898. Sur le champ magnétique au centre d’une bobine cylindrique et la construction de bobines galvanometers.
  102. Fahrni, C, Rufer, A, Bordy, F & Burnet, J, 2007. A novel 60 MW pulsed power system based on capacitive energy storage for particle accelerators.
  103. Fartoukh, S & Brüning, O, 2001. Field quality specification for the LHC main dipole magnets.
  104. Fischer, C M, 2002. Investigation of the Relationships Between Superconducting Properties and
    Nb3Sn Reaction Conditions in Powder-in-Tube Nb3Sn Conductors.
  105. Fischer, C M, Lee, P J & Larbalestier, D C, 2002. Irreversibility field and critical current density as a function of heat treatment time and temperature for a pure Niobium powder-in-tube conductor.
  106. Fleiter, J, Peggiani, S, Bonasia, A & Ballarino, A, 2018. Characterization of Nb3Sn Rutherford cable degradation due to strands cross-over.
  107. Foner, S & Schwartz, B B, eds, 1981. Superconductor Material Science.
  108. Frings, P, Witte, H, Jones, H, Beard, J & Hermannsdorfer, T, 2008. Rapid cooling methods for pulsed magnets.
  109. Fu, D, Lee, F, Qiu, Y & Wang, F, 2008. A novel high power density three-level LCC resonant converter with constant power-factor-control for charging applications.
  110. Fuller, R B, 1975. Synergetics: Explorations in the Geometry of Thinking.
  111. Galínski, M, Lewandowski, A & Stępniak, I, 2006. Ionic Liquids As Electrolytes.
  112. Gallagher-Daggit, G, 1973. Superconductor cables for pulsed dipole magnets.
  113. Ghaffari, M, Kinsman, W, Zhou, Y, Murali, S, Burlingame, Q, Lin, M, Ruoff, R & Zhang, Q, 2013. High Electrochemical Responses Of Ultra-High-Density Aligned Nano-Porous Microwave Exfoliated Graphite Oxide/Polymer Nano-composites Ionic Actuators.
  114. Ghaffari, M, Kosolwattana, S, Zhou, Y, Lachman, N, Lin, M, Bhattacharya, D, Gleason, K, Wardle, B & Zhang, Q, 2013. Hybrid Supercapacitor Materials From Poly(3,4-ethylenedioxythiophene) Conformally Coated Aligned Carbon Nanotubes.
  115. Ghaffari, M, Zhou, Y, Xu, H, Lin, M, Kim, T, Ruoff, R & Zhang, Q, 2013. Porous Microwave Exfoliated Graphite Oxide.
  116. Gharagheizi, F, Eslamimanesh, A, Mohammadi, AH, Richon, D, 2011. QSPR approach for determination of parachor of non-electrolyte organic compounds.
  117. Gieras, J, 1990. Linear Induction Motors.
  118. Godeke, A, ten Haken, B & ten Kate, H H J, 1999. Scaling of the critical current in ITER type niobium-tin superconductors in relation to the applied field temperature and uni-axial applied strain.
  119. Godeke, A, Krooshoop, H J G, ten Haken, B & ten Kate, H H J, 2001. Experimental verification of temperature and strain dependence of the critical properties of Nb3Sn wires.
  120. Godeke, A, ten Haken, B & ten Kate, H H J, 2002. Toward an accurate scaling relation for the critical current in niobium-tin conductors.
  121. Godeke, A, ten Haken, B & ten Kate, H H J, 2002. The deviatoric strain description of the critical properties of Nb3Sn conductors.
  122. Godeke, A, Jewell, M C, Golubov, A A, ten Haken, B & Larbalestier, D C, 2003. Inconsistencies between extrapolated and actual critical fields in Nb3Sn wires as demonstrated by direct measurement of Hc2, H* and Tc.
  123. Godeke, A, “Performance boundaries of Nb3Sn superconductors”, PhD Thesis Univ. of Twente, Enschede, The Netherlands, 2005. DOI: ISBN 90–365–2224–2
  124. Gogotsi, Y & Simon, P, 2011. True Performance Metrics in Electrochemical Energy Storage.
  125. Goldacker, W & Flükiger, R, 1983. Adv. Cryog. Eng. (Materials) 34, 561 (1983)
    Unable to find paper, title or DOI
  126. Goldberg, D, 1989. Genetic algorithms in search, optimisation and machine learning.
  127. Goodzeit, C, Ball, M & Meinke, R, 2003. The double helix dipole, a novel approach to accelerator magnet design.
  128. Gourlay, S, Ambrosio, G, Andreev, N, Anerella, M, Barzi, E, Bossert, R, Caspi, S, Dietderich, D, Ferracin, P, Gupta, R, Ghosh, A, Hafalia, A, Hannaford, C, Harrison, M, Kashikhin, V.S, Kashikhin, V.V, Lietzke, A, Mattafirri, S, McInturff, A, Nobrega, F, Novitsky, I, Sabbi, G, Schmazle, J, Stanek, R, Turrioni, D, Wanderer, P, Yamada, R & Zlobin, A , 2006. Magnet R&D for the US LHC accelerator research program.
  129. Graineri, P, Calvi, M, Xydi, P, Baudouy, Bocian, D, Bottura, L, Breshi, M, Seikmo, A, 2008. Stability analysis of the LHC cables for transient heat depositions.
  130. Griffiths, D, 1999. Introduction to Electrodynamics, 3rd ed.
  131. Grover, F, 1946. Inductance Calculations.
  132. Grössinger, R, Krichmayra, H, Sassik, H, Schwetz, M, Taraba, M & Frings, P, 1999. Austromag-a new high-field facility.
  133. Gualous, H, Bouquain, D, Berthon, A, Kauffmann, J, 2003. Experimental study of supercapacitor serial resistance and capacitance variations with temperature.
  134. Gualous, H, Louahlia-Gualous, H, Gallay, R, Miraoui, A, 2009. Supercapacitor thermal modeling and characterization in transient state for industrial applications.
  135. Guangwei, S, Meisinger, R & Gang, S, 2007. Modelling and Simulation of Shanghai Maglev Train Transrapid with Random Track Irregularities.
  136. Hake, R R, 1967. Paramagnetic superconductivity in extreme type II superconductors.
  137. Hale, J R, & Williams, J E C, 1968. The transient stabilization of Nb3Sn composite ribbon magnets.
  138. Hampshire, D P, Jones, H & Mitchell, E J W, 1985. An in depth characterisation of (NbTa)&3Sn filamentary conductor.
  139. Han, K, Ishmaku, A, Xin, Y, Garmestani, H, Toplosky, V, Walsh, R, Swenson, C, Lesch, B, Ledbetter, H, Kim, S, Hundley, M and Sims, J, 2002. Mechanical properties of MP35N as a reinforcement material for pulsed magnets.
  140. Hanak, J J, Strater, K & Cullen, G W, 1964. Preparation and properties of vapor deposited niobium stannide.
  141. Hardy, G F & Hulm, J K, 1953. Superconducting silicides and germanides.
  142. Hashimoto, Y, Yoshizaki K & Tanaka, M, 1974. Processing and properties of superconducting Nb3Sn filamentary wires.
  143. Haverkamp, M, 2003. Decay and Snap-Back in Superconducting Accelerator Magnets.
  144. Hechler, H, Horn, G, Otto, G & Saur, E,1969. Measurements of critical data for some Type II superconductors and comparison with theory
  145. Henning, W, 2004. FAIR — An international accelerator facilitator
  146. Herlach, F, 1999. Pulsed Magnets.
  147. Herlach, F & Miura, F, 2003. High Magnetic Fields Science & Technology — Controlled Waveform Magnets.
  148. Herlach, F, Peng, T & Vanacken, J, 2006. Experimental and theoretical analysis of the heat distribution in pulsed magnets.
  149. Holland, J, 1975. Adaptation in natural and artificial systems.
  150. Holland, J, 1992. Genetic algorithms.
  151. Huang, Y, Frings, P & Hennes, E, 2002. Mechanical properties of zylon/epoxy composites.
  152. Hung, K, Masarapu, C, Ko, T & Wei, B, 2009. Wide-temperature Range Operation Supercapacitors From Nanostructured Activated Carbon Fabric.
  153. Hurley, W, Duffy, M, Zhang, J, Lope, I, Kunz, B & Wölfle, W, 2015. A Unified Approach To The Calculation Of Self And Mutual Inductance For Coaxial Coils In Air.
  154. Iwasa, Y, 1994. Case studies in superconducting magnets.
  155. Izadi-Najafabadi, A, Yasuda, S, Kobashi, K, Yamada, T, Futaba, D, Hatori, H, Yumura, M, Ilijima, S & Hata, K, 2010. Extracting The Full Potential Of Single-Waller Carbon Nanotubes As Durable Supercapacitor Electrodes Operable At 4V With High Power And Energy Density.
  156. Jackson, JD, 1986. Conceptual design of the superconducting super collider.
  157. Jain, A, Ganetis, G, Louie, W, Marone, A, Thomas, R & Wanderer, P, 2004. Magnetic Field Measurements for Fast-Changing Magnetic Fields.
  158. Jain, A, Ganetis,G, Gosh, A, Wing, L, Marone, A, Thomas, R & Wanderer, P, 2008. Field quality measurements at high ramp rates in a prototype dipole for the FAIR project.
  159. Jayawant, B, 1981. Electromagnetic suspension and levitation.
  160. Jiang, L, Zhao, J, Gao, Y & Zhou, Y, 2021. Geometrical modelling and mechanical behaviour analysis of Nb3Sn Rutherford cable.
  161. Jones, H, Frings, P, von Ortenberg, M, Lagutin, A, van Bockstal, L, Portugall, O & Herlach, F, 2004. First experiments in fields about 75T in the European “coilin — coilex” magnet.
  162. Jones, H, Frings, P, Portugall, O, von Ortenberg, M, Lagutin, A, Herlach, F & Van Brockstal, L, 2006. ARMS: A successful european program for an 80T user magnet.
  163. Kaiho, K, Namba, T, Ohara, T & Koyama, K, 1976. Optimisation of Superconducting Solenoid.
  164. Kamerlingh Onnes, H, 1911. The superconductivity of Mercury.
  165. Kang, C G, Seo, P K, Jung, H K, 2002. Numerical Analysis By New Proposed Coil Design Method In Induction Heating Process for Semi-Solid Forming and Its Experimental Verification With Globalisation Evaluation.
  166. Kapitza, P, 1938. Viscosity of liquid helium below the lambda point.
  167. Karhi, R, Wetz, D, Mankowski, J & Giesselmann, M, 2012. Theoretical and experimental analysis of breech fed and 40-distributed energy stage plasma arc railguns.
  168. Kaufmann, A R & Pickett, J J, 1970. Multifilament Nb3Sn superconducting wire.
  169. Kaugerts, J, Moritz, G, Muehle, C, Ageyev, A, Bogdanov, I, Kozub, Shcherbakov, P, Sytnik, V, Tkachenko, L, Zubko, V, Tommasini, D, Wilson, M & Hassenzahl, W, 2005. Design of a 6T, 1 T/s fast-ramping synchrotron magnet for GSIs planned SIS300 Accelerator.
  170. Kauschke, M & Schroeder, S C, 2004. Cryogenic system for the new international accelerator facility for research with ions and antiprotons at GSI.
  171. Keys, S A & Hampshire, D P, 2003. A scaling law for the critical current density of weakly- and strongly-coupled superconductors, used to parameterize data from a technological Nb3Sn strand.
  172. Khan, M, Ali, A, Ali, H, Khattak, M & Ahmad, I, 2016. Designing Efficient Electric Power Supply System for Micro-Satellite.
  173. Kim, Y B, Hempstead, C F and Strnad, A R, 1962. Critical persistent currents in hard superconductors.
  174. Kindo, K, 2001. 100T magnet developed in Osaka.
  175. Kircher, F, Levesy, B, Pabot, Y, Campi, D, Cure, B, Herve, A, Horvath, I, Fabbricatore, P & Musenich, R, 1999. Status report on the CMS superconducting solenoid for LHC.
  176. Kiyoshi, T, Sato, A, Takeuchi, T, Itoh, K, Matsumoto, S, Ozaki, O, Fukushima, K,
    Wada, H, Yoshikawa, M, Kamikado, T, Ito, S, Miki, T, Hase, T, Hamada, M, Hayashi, S, Kawate, Y & Hirose, R, 2002. Persistent-mode operation of a 920 Mhz high-resolution NMR magnet.
  177. Kozub, S, Bogdanov, I, Seletsky, A, Shcherbakov, P, Syntik, V, Tkachenko, L, Zubko, V, 2006. Final Report on the Development Contract Technical Design of the SIS-300 Dipole Magnet.
  178. Kötz, R, Hahn, M & Gallay, R, 2006. Temperature Behaviour And Impedance Fundamentals Of Supercapacitors.
  179. Kresin, V Z, Morawitz, H & Wolf, S A, 1993. Mechanisms of Conventional and High Tc
  180. Kunze, M, Jeong, S, Paillard, E, Winter, M & Passerini, S, 2010. Melting Behaviour Of Pyrrolidinium-Based Ionic Liquids And Their Binary Mixtures.
  181. Kunze, M, Montanino, M, Appetecchi, G, Jeong, S, Schonhoff, M, Winter, M & PAsserini, S, 2010. Melting Behaviour And Ionic Conductivity In Hydrophobic Ionic Liquids.
  182. La, J, Bae, K, Lee, S, Song, M, Nam, K and Jung, Y, 2016. Coil Design Optimisation for an Induction Evaporation Process: Simulation and Experiment.
  183. Unable to find — paper, title or DOI — Lawless, W N, US Air Force Report AFWAL-TR-82–2056 see also IEEE, Trans MAG-18,3,p432
  184. Lebrun, P, 2007. Advanced technology from and for basic science: superconductivity and superfluid helium at the large hadron collider, CERN.
  185. Lee, H, Kim, K & Lee, J, 2006. Review of maglev train technologies.
  186. Lee, P J & Larbalestier, D C, 2001. Compositional and microstructural profiles across Nb3Sn filaments produced by different fabrication methods.
  187. Lee, P J & Larbalestier, D C, 2003. Niobium-titanium superconducting wires: Nanostructures by extrusion and wire drawing.
  188. Lee, P J, Squitieri, AA & Larbalestier, D C, 2000. Nb3Sn macrostructures, microstructures and property comparisons for bronze and internal Sn process strands.
  189. Li, L, 1998. High performance pulsed magnets: Theory, design and construction.
  190. Li, L & Herlach, F, 1995. Deformation analysis of pulsed magnets with internal and external reinforcement.
  191. Li, L & Herlach, F, 1998. Magnetic and thermal diffusion in pulsed high field magnets.
  192. Li, Q, Lee, F & Jovanovic, M, 1999. Design considerations of transformer dc bias of forward converter with active-clamp reset.
  193. Lienhard, J, 2004. A Heat Transfer Textbook.
  194. Littell, J D, Ruggeri, C R, Goldberg, R K, Roberts, G D, Arnold, W A, Binienda W K, 2008. Measurement of epoxy resin tension, compression, and shear stress–strain curves over a wide range of strain rates using small test specimens.
  195. Liu, K, Sun, R, Gao, Y & Yan, P, 2015. High voltage repetition-frequency charging power supply for pulsed laser.
  196. Liu, P, Verbrugge, M & Soukiazian, S, 2006. Influence Of Temperature And Electrolyte On The Performance Of Activated Carbon Supercapacitors.
  197. Liu, Q, Bo, H & Qin, B, 2010. Experimental Study & Numerical Analysis On Electromagnetic Force of Direct Action Solenoid Valve.
  198. Livingston, J D, 1978. Effect of Ta Additions to Bronze \-Processed Nb3Sn Superconductors.
  199. Manil P, Nunio F, Othmani Y, Aubin V, Buffiere J-Y, Commisso MS, Dokladal, P, Durville, D, Lenoir, G, Lerme, N & Maire, E, 2017. A numerical approach for the mechanical analysis of superconducting Rutherford- type cables using bimetallic description.
  200. Marglin, S, 1966. Objectives of water-resource development in Maass et al, ‘Design of water-resource systems’.
  201. Marken, K R, 1986. Characterization Studies of Bronze-Process Filamentary Nb3Sn Composites, Ph.D. Thesis.
  202. Markiewicz, W D, Bonney, L A, Dixon, I A, Eyssa, Y M, Swenson, C A & Schneider-Muntau, H J, 1996. Technology of 1 Ghz NMR superconducting magnets.
  203. Marshall, W, Swenson, C, Gavrilin, A & Schneider-Muntau, H, 2004. Development of fast cool pulse magnet coil technology at NHMFL
  204. IEEE format: W. S. Marshall, C. A. Swenson, A. V. Gavrilin, & H. J. Schneider-Muntau, “Development of ‘Fast Cool’ pulsed magnet coil technology at NHMFL.” in Physica B vol. 346, pp. 594–598, 2004. DOI: 10.1016/j.physb.2004.01.156
  205. Martinez, A & Duchateau, J L, 1997. Field and temperature dependencies of critical current on industrial Nb3Sn strands.
  206. Unable to find this — T. Matsushita, K. Yamafuji and F. Irie (eds.), Proc. of International Symposium on Flux Pinning and Electromagnetic Properties in Superconductors, Fukuoka, Japan, 11–14November 1985, Matsukuma Press, Fukuoka, (1985)
  207. Matthias, B T, Geballe, T H, Geller, S & Corenzwit, E, 1954. Superconductivity of Nb3Sn.
  208. Meinke, R, 1991 Superconducting magnet system for HERA.
  209. Meissner, W & Ochsenfeld, R, 1933. Ein neuer Effekt bei Eintritt der Supraleitfähigkeit.
  210. Meß, K, H, Schmuser, P, Wolff, S, 1996. Superconducting accelerator magnets.
  211. Meyer, D & Flasck, R, 1970. A new configuration for a dipole magnet for use in high energy physics applications.
  212. Michalewicz, Z, 1996. Genetic Algorithms and data structures = evolution programs.
  213. Mirkhani, SA, Gharagheizi, F, Ilani-Kashkouli, P, Farahani, N, 2012. Determination of the glass transition temperature of ionic liquids: A molecular approach.
  214. Mitchell, N, 2005. Finite element simulations of elasto-plastic processes in Nb3Sn strands.
  215. Miyagawa, H, Mase, T, Sato, C, Drown, E, Drzal, L & Ikegami, K, 2006. Comparison of experimental and theoretical transverse elastic modulus of carbon fibre.
  216. Miyazaki, T, Murakami, Y, Hase, T, Shimada, M, Itoh, K, Kiyoshi, T, Takeuchi,
    T, Inoue, K & Wada, H, 1999. Development of Nb3Sn Superconductors for a 1 Ghz NMR magnet. Dependence of high-field characteristics on tin content in bronze matrix.
  217. Montgomery, D & Weggel, R, 1980. Solenoid Magnet Design
  218. Moore, D F, Zubeck, R B, Rowell, J M & Beasley, M R, 1979. Energy gaps of the A — 15 superconductors Nb3Sn, V3Si, and Nb3Ge measured by tunneling.
  219. Moritz, G, 2004. Fast-pulsed SC magnets.
  220. Moritz, G, Muehle, C, Anerella, M, Ghosh, A, Sampson, W, Wanderer, P, Willen, E, Agapov, N, Khodzhibagiyan, H, Kovalenko, A, Hassenzahl, W & Wilson, M, 2001. Towards fast pulsed superconducting synchrotron magnets.
  221. Motokawa, M, Hojiri, H, Ishihara, J & Ohnishi, K, 1989. Production of repeating pulsed high magnetic field.
  222. Nagamatsu, J, Nakagawa, N, Muranaka, T, Zenitani, Y & Akimitsu, J, 2001. Superconductivity at 39K in Magnesium diboride.
  223. Nelson, W, 2004. Accelerated testing: Statistical models, test plans and data analysis.
  224. Neuringer, L J & Shapira, Y, 1966. Effect of spin-orbit scattering on the upper critical field of high-field superconductors.
  225. Nian, S, Tsai, S, Huang, M, Huang, R, Chen, C, 2014. Key Parameters and Optimal Design of a Single Layered Induction Coil for External Rapid Mold Surface Heating.
  226. Nilsson, J & Riedel, S, 2010. Electric Circuits, 9th ed.
  227. Nojiri, H, Motokawa, M, Takahashi, K & Arai, M, 2000. 30 T repeating pulsed field system for neutron diffraction.
  228. Nomura, S, Nitta, T & Shintomi, T, 2020. Mobile Superconducting Magnetic Energy Storage for On-Site Estimations of Electric Power System Stability.Orlando, T P & Delin, K A, 1991. Foundations of Applied Superconductivity.
  229. Orlando, T P, McNiff Jr, E J, Foner, S & Beasley, M R, 1979. Critical field, Pauli paramagnetic limiting and material parameters of Nb3Sn and V3Si.
  230. O’Connor, K & Curry, R, 2010. High Voltage characterisation of high dielectric constant composites.
  231. O’Connor, K & Curry, R, 2014. Recent Results in the Development of composites for High Energy Density Capacitors.
  232. Painter, T, Bole, S, Eyssa, Y, Dixon, I, Williams, V, Maier, S, Gundlach, S, Tozer, S, Hascicek, Y & Ammerman, C, 2000. Design of 30 T split pair pulse coils for LANSCE.
  233. Pantsyrnyi, V, Shikov, A, Vorobieva, A, Khiebova, N, Kozlenkova, N, Potapenko, I & Polikarpova, M, 2006. Stability aspects of the high strength, high conductivity microcomposite CuNb wires properties.
  234. Parker, J V, 1982. Electromagnetic projectile acceleration utuilizing distributed energy sources.
  235. Parks, R D, ed, 1969. Superconductivity,
  236. Parrell, J A, Field, M B, Zhang, Y & Hong, S, 2004. Nb3Sn conductor development for fusion and particle accelerator applications.
  237. Passerone, C, Tranchero, M, Speretta, S, Reyneri, L, Sansoé, C, Del Corso, D, 2008. Design Solutions for a university nano-satellite.
  238. Pech, D, Brunet, M, Durou, H, Huang, P, Mochalin, V, Gogotsi, Y, Taberna, P & Simon, P, 2010. Ultrahigh-power micrometer-sized supercapacitors based on onion-like carbon.
  239. Peng, T & Herlach, F, 2008. Design Principles for Optimised Pulsed Magnets.
  240. Peng, T, Li, L, Vanacken, J & Herlach, F, 2008. Efficient Design of Advanced Pulsed Magnets.
  241. Peng, T, Jiang, F, Sun, Q, Xu, Q, Xiao, H, Herlach, F & Li, L, 2014. Design and test of a 90T nondestructive magnet at Wuhan National High Magnetic Field Centre.
  242. Perenboom, J, Frings, P, Beard, J, Bansai, B, Herlach, F, Peng, T and Zherlitsyn, S, 2010. Optimisation of large multiple coil systems for pulsed magnets.
  243. Pilat, A & Turnau, A, 2010. Magnetic Levitation.
  244. Pilat, A & Zyla, M, 2013. Propulsion Control of the Semi Magnetically Levitated Cart.
  245. Poole Jr, C P, Farach, H A & Creswick, R J, 1995. Superconductivity.
  246. Potanina, L V, Shikov, A K, Vorobieva, A E, Salunin, N I, Medvedev, M I, Keilin, V E, Kovalev, I A, Kruglov, S L, 2008. Nb3SN And NbTi Multifilamentary Wires With Enhanced Heat Capacity.
  247. Pradhan, J, Bhunia, U, Roy, A, Panda, U, Bhattacharyya, T, Thakur, S, Khare, V, Das, M, Saha, S & Bandari, R, 2013. Basic Design and Test Results of High Temperature Superconductor Insert Coil for High Field Hybrid Magnet.
  248. Prodell, AG, 1968. BNL (Brookhaven National Laboratory) summer study.
  249. Proudlock, P, Russenschuck, S & Zerlauth, M, 2004. LHC Magnet Polarities, Engineering Specification.
  250. Pulikowski, D, Lackner, F, Scheuerlein, C & Pajor, M, 2017. Numerical modelling of a superconducting coil winding process with Rutherford type Nb3Sn cable.
  251. Pulikowski, D, 2018. Experimental and numerical investigation of the winding process of superconducting coils made of multi-strand Rutherford-type Nb3Sn cable. [D]
  252. Rabuffi, M & Picci, G, 2012. Status quo and future prospects for metallised polypropylene energy storage capacitors.
  253. Ravaioli, E, 2015. CLIQ. A new quench protection technology for superconducting magnets,
  254. Rechenberg, I, 1973. Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der biologischen evolution.
  255. Reed, C & Cichanowski, S, 1994. The fundamentals of aging in HV polymer film capacitors.
  256. Rios, J, Roascio, D, Reyneri, L, Sansoé, Passerone, C, Corso, D, Bruno, M, Hernandez, A, Vallan, A, 2011. ARAMIS: A fine grained modular architecture for reconfigurable space missions.
  257. Roeland, L, Gersdorf, R & Mattens, W, 1989. The 40-T facility of the University of Amsterdam.
  258. Rogalla, H & Kes, P H, 2012. 100 years of superconductivity.
  259. Rose-Innes, A C & Rhoderick, E H, 1978. Introduction to Superconductivity.
  260. Russenschuck, S, 2010. Field Computation for Accelerator Magnets.
  261. Saint-James, D, Sarma, G & Thomas, E, 1969. Type II Superconductivity.
  262. Scanlan, R M, Fietz, F A & Koch, E F, 1975. Flux pinning centers in superconducting Nb3Sn
  263. Schauer, W & Schelb, W, 1981. Improvement of Nb3Sn high field critical current by a two stage reaction.
  264. Scheuerlein, C, Fedelich, B, Alknes, P, Arnau, G, Bjoerstad, R & Bordini, B, 2015. Elastic anisotropy in multifilament Nb3Sn superconducting wires.
  265. Scheuerlein, C, Lackner, F, Savary, F, Rehmer, B, Finn, M & Uhlemann, P, 2017. Mechanical properties of the HL-LHC 11 Tesla Nb3Sn magnet constituent materials.
  266. Schillig, J, Boenig, H, Gordon, M, Mielke, C, Rickel, D & Sims, J, 2000. Operating experience of the United States’ national high magnetic field laboratory 60T long pulse magnet.
  267. Schimpf, P, 2013. A detailed explanation of solenoid force.
  268. Schneuwly, A, Groning, P & Schlapbach, L, 1998. Breakdown behaviour in oil impregnated as dielectric in film capacitors.
  269. Schoerling, D & Zlobin, A V, 2019. Nb3Sn Accelerator Magnets — Designs, Technologies and Performance.
  270. Schwefel, H, 1977. Numerische optimierung von computer-modellen mittels der evolutionsstrategie.
  271. Shaw, B J, 1976. Grain size and film thickness of Nb3Sn formed by solid-state diffusion in the range 650–800 C.
  272. Seo, H, Lim, J, Choe, G, Choi, J & Jeong, J, 2018. Algorithm of Linear Induction Motor Control For Low Normal Force Of Magnetic Levitation Train Propulsion System.
  273. She, W, 2011. The Improved Electromagnetic Equations And Superconductivity.
  274. Shi, J, Han, X, Xie, J & Li, L, 2016. Analysis and Design of a Control System for the 100T Pulsed High Magnetic Field Facility at WHMFC.
  275. Sides, C & Martin, C, 2005. Nanostructured Electrodes And The Low-Temperature Performance Of Li-Ion Batteries.
  276. Silvester, P & Ferrari, R, 1996. Finite Elements for Electrical Engineers.
  277. Simon, P & Gogotsi, Y, 2008. Materials For Electrochemical Capacitors.
  278. Simon, P, Gogotsi, Y & Dunn, B, 2014. Where Do Batteries End And Supercapacitors Begin?
  279. Skourski, Y, Herrmannsdorfer T, Sytcheva, A, Wosnitza, J, Wustmann, B and Zherlitsyn, S, 2008. Finite element simulation and performance of pulsed magnets.
  280. Sonnemann, F, 2001. Resistive transition and protection of LHC superconducting cables and magnets.
  281. Springer, E, Wilhelm, M, Weisse, H J & Rupp, G, 1984. Properties of (NbTa)3Sn Filamentary Conductors.
  282. Stekly, Z & Zar, J, 1965. Stable superconducting coils.
  283. Street, A, 2003. Superconducting magnets: at the heart of NMR.
  284. Suenaga, M, Welch, D O, Sabatini, R L, Kammerer, O F & Okuda, S, 1986. Superconducting critical temperatures, critical magnetic fields, lattice parameters, and chemical compositions of “bulk” pure and alloyed Nb3Sn produced by the brone process.
  285. Summers, L T, Guinan, M W, Miller, J R & Hahn, P A, 1991. A model for the prediction of Nb3Sn critical current as a function of field, temperature, strain and radiation damage.
  286. Sutter, DF & Strauss, BP, 2000. Next generation high energy physics colliders: technical challenges and prospects.
  287. Swenson, C, Marshall, W, Gavrilin, A, Han, K, Schillig, J, Sims, J & Schneider-Muntau, H, 2004. Progress of the insert coil for the US-NHMFL 100 T multi-shot pulse magnet.
  288. Swenson, C, Gavrilin, A, Han, K, Walsh, R, Schneider-Muntau, H, Rickel, D, Schillig, J, Ammerman, C & Sims, J, 2006. Performance of 75T prototype pulsed magnet.
  289. Swenson, C, Rickel, D & Sims, J, 2008. 80T magnet operational performance and design implications.
  290. Not found — Sun, C & Juang, J, 2012. Design & implementation of a microsatellite electric power subsystem.
  291. Tachikawa, K, Asano, T and Takeuchi, T, 1981). High‐field superconducting properties of the composite‐processed Nb3Sn with Nb‐Ti alloy cores
  292. Takamura, T, Sato, Y & Sato, Y, 2011. Capacitance Improvement Of Supercapacitor Active Material Based On Activated Carbon Fibre Working with A Li-Ion Containing Electrode.
  293. Taylor, D, 1984. On the mechanism of aluminium corrosion in metallised film AC capacitors.
  294. ten Haken, B, 1994. Strain effects on the critical properties of high-field superconductors.
  295. ten Haken, B, Godeke, A & ten Kate, H H J, 1994. Calculation of the critical current reduction in a brittle wound multifilamentary wire due to external forces
  296. ten Haken, B, Zaitseva, T N & ten Kate, H H J, 1994. Modeling of strain in multifilamentary wires deformed by thermal contraction and transverse forces.
  297. ten Haken, B, Godeke, A & ten Kate, H H J, 1995. A reversible rise in the critical current of a Nb3Sn-bronze tape due to a transverse pressure
  298. ten Haken, B, Godeke, A & ten Kate, H H, 1997. Investigation of Microscopic Strain by X-Ray Diffraction in Nb3Sn Tape Conductors Subjected to Compressive and Tensile Strains.
  299. ten Haken, B, Godeke, A & ten Kate, H.H.J, 1999. The strain dependence of the critical properties of Nb3Sn conductors
  300. Thompson W T, 1986. Introduction to space dynamics.
  301. Thornton, R, Clark, T & Perreault, B, 2004. Linear synchronous motor propulsion in small transit vehicles.
  302. Tilley, D & Tilley, J, 1990. Superfluidity and Superconductivity.
  303. Timoshenko, S, 1956. Strength of materials, Part II, Elementary Theory and Problems.
  304. Tinkham, M, 1996. Introduction to Superconductivity, 2nd ed.
  305. Vanacken, J, Li, L, Rosseel, K, Boon, W & Herlach, F, 2001. Pulsed Magnet Design Software.
  306. Van Bockstal, L, Heremans, G & Herlach, F, 1991. Coils with fibre composite reinforcement for pulsed magnetic fields in the T50–75 range.
  307. Van Sciver, S, 1986. Helium Cryogenics.
  308. Verweij, A, 2006, CUDI: A model for Calculation of Electrodynamic and Thermal Behaviour of Superconducting Rutherford Cables.
  309. Vinciarelli, P, 1984. Optimal resetting of the transformers core in single ended forward converters.
  310. Wanderer, P, Anerella, M, Ganetis, G, Ghosh, A, Joshi, P, Marone, A, Muratore, J, Schmalle, J, Soika, R, Thomas, R, Kaugerts, J, Moritz, G, Hessenzahl, W & Wilson, M, 2003. Initial test of a fast-ramped superconducting model dipole for GSIs proposed SIS200 accelerator.
  311. Wang X, Gao Y, 2016. Tensile behavior analysis of the Nb3Sn superconducting strand with damage of the filaments.
  312. Wang, X, Gao, Y & Zhou, Y, 2016. Electro-mechanical behaviors of composite superconducting strand with filament breakage.
  313. Wang, Y, Shi, Z, Huang, Y, Ma, Y, Wang, C, Chen, M & Chen, Y, 2009. Supercapacitor Devices Based On Graphene Materials.
  314. Unable to find this — Weise, T, Hofmann, J, Anderson, R, Jorling, J, Kerschke, R, Hermannsdorfer, T & Krug, H, 2004. The capacitive 49 MJ pulsed power supply system for the high magnetic field laboratory at FZ-Rossendorf.
  315. Weisend, J G, 1998. Handbook of cryogenic engineering.
  316. Welch, D.O, 1980. Alteration of the Superconducting Properties of A15 Compounds and Elementary Composite Superconductors by Nonhydrostatic Elastic Strain
  317. Welsby, V, 1960. The Theory and Design of Inductance Coils.
  318. West, A W & Rawlings, R D, 1977. A transmission electron microscopy investigation of filamentary superconducting composites
  319. White, M W, 2006. Viscous fluid flow.
  320. Wilson, M N, 1983. Superconducting magnets.
  321. Wilson, M N, 2004. Calculation of loss in the SIS300 dipole.
  322. Wilson, M N, 2004. Further Loss Calculation for Dipole 001.
  323. Wilson, M N, 2008. NbTi superconductors with low ac losses: a review.
  324. Wilson, M N, 2012. 100 years of superconductivity and 50 years of superconducting magnets.
  325. Wilson, M N, Anerella, M, Ganetis, G, Ghosh, A K, Joshi, P, Marone, A, Muehle, C, Muratore, J, Schmalzle, J, Soika, R, Thomas, R, Wanderer, P, Kaugerts, J, Moritz, G & Hassenzahl, W V, 2004. Measured and calculated losses in model dipole for GSI’s heavy ion synchrotron.
  326. Wilson, M N, Ghosh, A, Ten Haken, B, Hassenzahl, W, Kaugerts, J, Moritz, G, Muehle, C, Den Ouden, A, Soika, R, Wanderer, P & Wessel, W, 2003. Cored Rutherford cables for the GSI fast-ramping synchrotron.
  327. Wilson, M N, Moritz, G, Anerella, M, Ganetis, G, Ghosh, A K, Hassenzahl, W V, Jain, A, Joshi, P, Kaugerts, J, Muehle, C, Muratore, J, Thomas, R, Walter, G & Wanderer, P, 2002. Design studies on supercon- ducting Cos theta Magnets for a fast pulsed synchrotron.
  328. Wolf, F, Ebermann, P, Lackner, F, Mosbach, D, Scheuerlein, C, Schladitz, K & Schoerling, D, 2018. Characterization of the stress distribution on Nb3Sn Rutherford cables under transverse compression.
  329. Wolf F, Scheuerlein C, Lorentzon M, Katzer B, Hofmann M, Gan W, Lackner, F, Schoerling, D, Tommasini, D, Savary, F & Bottura, L, 2019. Effect of applied compressive stress and impregnation material on internal strain and stress state in Nb3Sn Rutherford cable stacks.
  330. Wright, J, Lee, D, Mohan, A, Papou, A, Smeys, P & Wang, S, 2010. Analysis of Integrated Solenoid Inductor With Closed Magnetic Core.
  331. Wu, I.W. Dietderich, D.R. Holthuis, J.T. Hong, M. Hassenzahl, W.V. and Morris Jr. J.W, 1983. The microstructure and critical current characteristic of a bronze‐processed multifilamentary Nb3Sn superconducting wire.
  332. Wu, L, Lu, K & Xia, Y, 2018. Mutual Inductance Calculation Of Two Coaxial Solenoid Coils With Iron Core.
  333. Xiong, G, Meng, C, Reifenberger, R, Irazoqui, P & Fisher, T, 2014. A Review Of Graphene Based Electrochemical Microsupercapacitors
  334. Xiong, G, Kundu, A & Fisher, TS, 2015. Thermal Effects In Supercapacitors.
  335. Yagai T, Okubo T, Hira M, Kamibayashi M, Jimbo M, Kuwabara Y, Takao, T, Makida, Y, Shintomi, T, Hirano, N, Komagome, T, Tsukada, K, Onji, T, Arai, Y, Ishihara, A, Tomita, M, Miyagi, D, Tsuda, M & Hamajima, T, 2019. Stability Analysis of MgB2 Coils for SMES Application Consisting of Large-Scale Rutherford Cables.
  336. Yuan, C, Zhang, X, Wu, Q & Gao, B, 2006. Effect Of Temperature On The Hybrid Supercapacitor Based On NiO And Activated Carbon With Alkaline Polymer Gel Electrolyte.
  337. Zhang, F, Zhang, T, Yang, X, Zhang, L, Leng, K, Huang, Y & Chen, Y, 2013. A High Performance Supercapacitor-Battery Hybrid Energy Storage Device Based On Graphene-Enhanced Electrode Materials With ultrahigh Energy Density.
  338. Zhang, H, 2013. Concepts of linear regulator and switching mode power supplies.
  339. Zhao, L, Hu, Y, Li, H, Wang, Z & Chen, L, 2011. Porous Li(4)Ti(5)O(12) Coated With N-Doped Carbon From Ionic Liquids For Li-Ion Batteries.
  340. Zherlitsyn, S, Bianchi, A, Hermannsdorfer, T, Pobell, F, Skourski, Y, Sytcheva, A, Zvyagin, S & Wosnitza, J, 2006. Coil design for non destructive pulsed-field magnets targeting 100T.
  341. Zherlitsyn, S, Herrmannsdorfer, T, Skourski, Y, Sytcheva, A & Wosnitza, J, 2007. Design of non-destructive pulsed magnets at the HLD.
  342. Zherlitsyn, S, Herrmannsdorfer, T, Wurstmann, B & Wosnitza, J, 2010. Design and performance of nondestructive pulsed magnets at the Dresden High Magnetic Field Laboratory.
  343. Zherlitsyn, S, Wurstmann, B, Herrmannsdorfer, T & Wosnitza, J, 2012. Status of the Pulsed-Magnet-Development Program at the Dresden High Magnetic Field Laboratory.
  344. Zhou, J, Ding, H, Liu, Y, Zhao, Z, Huang, Y, Fang, X & Wang, Q, 2016. A High Power Charging Power Supply For Capacitor in Pulsed Power System.
  345. Zhou, Y, Ghaffari, M, Lin, E, Parsons, E, Liu, Y, Wardle, B & Zhang, Q, 2013. High Volumetric Electrochemical Performance Of Ultra-High Density Aligned Carbon Nanotube Supercapacitors With Controlled Nanomorphology.
  346. Zhou, Y, Lachman, N, Ghaffari, M, Xu, H, Bhattacharya, D, Fattahi, P, Abidian, M, Wu, S, Gleason, K & Wardle, B, 2014. A High Performance Hybrid Asymmetric Supercapacitor Via Nano-Scale Morphology Control Of Graphene, Conducting Polymer And Carbon Nanotube Electrodes.
  347. Zhou, Y, Xu, H, Lachman, N, Ghaffari, M, Wu, S, Liu, Y, Ugur, A, Gleason, K, Wardle, B & Zhang, Q, 2014. Advanced Asymmetric Supercapacitor Based On Conducting Polymer And Aligned Carbon Nanotubes With Controlled Nanomorphology.
  348. Zhou, Y, Ghaffari, M, Lin, M, Xu, H, Xie, H, Koo, C & Zhang, M, 2015. High Performance Supercapacitor Under Extremely Low Environmental Temperature.

Thanks for flicking through!

Founder / / Equity Offering
The Video / The Pitch Deck / 6 Industries Ready
The Idea’s Physics / The Orbital Mechanics

Angel donations help to continue startup activities and research!
BTC: 1MkkavrLCwvqDbohXeGGtTzfab5FVbEiF4

For any enquiries, please reach out to:




The Railroad To Mars — Start-Up Interorbital Transport Service.

Love podcasts or audiobooks? Learn on the go with our new app.

Recommended from Medium


A “secret” simple way to detect the coronavirus without a test for everyone

READ/DOWNLOAD*$ Environment: The Science Behind the Stories (Masteringenvironmentalsciences) FULL…

Richard Feynman: the genius of simplicity

Penguins Don’t Live In The North Pole, Here Is Why

Scientists finally finish decoding entire human genome — WAUS

Scientists finally finish decoding entire human genome - WAUS

IBM Quantum Challenge Africa 2021: An overview

Layers of reality

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
H. Industries

H. Industries

The Railroad To Mars — Start-Up Interorbital Transport Service.

More from Medium

Newsflash: All Social Media Platforms Set to Merge

The new healthcare reality is leadership-driven change that happens fast

The one skill you need to build a high-performance organization

Does Your Product Pass the Steve Jobs’ Bubble Test?