Technology Primer (20p) — H.Mk.0: Reusable Interorbital Transport. 191120.v06

Abstract

Introduction

Concept Development

Interorbital Transport Service

Launch Mechanism

Figure. Electromagnetic Launch Pulse Interaction

Satellite Construction

Swarm Construction

Figure. Mk.0 Swarm Architecture

H.Mk.0 Electromagnetic Launch System

Launch Function

Figure. Launch Pulse Force Reaction

Launch System Algorithm — 220418: This calc path is v. out of date.

Concept Proof Chain.

  • Define satellite external dimensions.
  • Define container and launch plate dimensions.
  • Define swarm architecture dimensions.
  • Define electromagnetic coil to capacitor storage ratio.
  • Determine available satellite internal volumes.
  • Select superconductor material.
  • Define coil wire and winding dimensions.
  • Determine strand utilisation, iterate as needed.
  • Determine coil inductance, mutual & wire self inductance.
  • Determine coil strength capability and force output.
  • Determine coil energy rise requirement.
  • Define capacitor system dimensions
  • Determine Watt/hour output from volume & chemistry.
  • Does capacitor Watt/hour capacity exceed coil energy rise requirement?
  • Determine pulsewave profile from ramp times & power consumption for flat top pulse length.
  • Determine field strength in force at top of solenoid, z(0).
  • Determine field strength & inductance in material at corner of satellite wing above.
  • Determine induced field in material then reactionary force against applied field for time.
  • Combine power / field strength / pulse wave / acceleration vector as electromotive model.
  • Iterate design to maximise pulse outcome.
  • Define cargo payload mass.
  • Apply electromotive function to each layer then cargo plate and cargo payload mass.
  • Define orbital location.
  • Determine orbital speed & rotation vector.
  • Apply planetary vector paths.
  • Determine transit vector paths.
  • Determine flight time.

Conclusion

References

  1. Aguglia, D, 2013. Pulse transformer design for magnet powering in particle accelerators.
  2. Aguglia, D, Cravero, J, Rebeschini, R, Iovieno, S & Russo, C, 2015. Design Solutions for Compact High Current Pulse Transformers for Particle Accelerators’ Magnet Powering.
  3. Aird, G, Simkin, J, Taylor, S, Trowbridge, C, Xu, E, 2006. Coupled transient thermal and electromagnetic finite element simulation of quench in superconducting magnets.
  4. Algarni, A, Gleason, F & Mohanakumaran, A, 2014. Electromagnetic Ring Launcher.
  5. Ali, A, Ali, H, Mughal M & Reyneri, L, 2012. Components selection for a simple boost converter on the basis of power loss analysis.
  6. Allen, J & Misener, A, 1938. Flow of liquid Helium II.
  7. Al Sakka, M, Gualous, H, Van Mierlo, J, Culcu, H, 2009. Thermal modeling and heat management of supercapacitor modules for vehicle applications.
  8. Anouti, M, Couadou, E, Timperman, L, Galiano, H, 2012. Protic ionic liquid as electrolyte for high-densities electrochemical double layer capacitors with activated carbon electrode material.
  9. Baba, J, Nitta, T, Shirai, Y, Akita, S, Hayashi, Y & Kobayashi, Y, 2001. Power Converter for SMES by use of ICB energy transfer circuit.
  10. Bacon, J, Ammerman, C, Coe, H, Ellis, G, Lesch, B, Sims, J, Schillig, J & Swenson, C, 2002. The US NHMFL 100 Tesla multishot magnet.
  11. Balducci, A, Dugas, R, Taberna, P, Simon, P, Plee, D, Mastragostino, M & Passerini, S, 2007. High Temperature Carbon-Carbon Supercapacitor Using Ionic Liquid As Electrolyte.
  12. Beth, R, 1966. Complex representation and computation of two-dimensional fields.
  13. Beth, R, 1967. An integral formula for two-dimensional fields.
  14. Benvenuti, C, 1983. A new pumping approach for the large electron positron collider (LEP).
  15. Binns, K, Lawrenson, P & Trowbridge, C, 1992. The analytical and numerical solutions of electric and magnetic fields.
  16. Bird, M, Gavrilin, A, Gundlach, S, Han, K, Swenson, C & Eyssa, Y, 2006. Design & Testing of a repetitively pulsed magnet for neutron scattering.
  17. Boattini, F & Genton, C, 2015. Accelerated lifetime testing of energy storage capacitors used in particle accelerator power converters.
  18. Boom, F & Livingstone, R, 1962. Proceedings of IRE.
  19. Bortis, D, Biela, J & Kolar, J, 2007. Optimal design of a DC reset circuit for pulse transformers.
  20. Bortis, D, Biela, J & Kolar, J, 2008. Design and control of an active reset circuit for pulse transformers.
  21. Bottura, L, 1999. A practical fit for the critical surface of NbTi.
  22. Bragin, A, Khrushchev, S, Kubarev, V, Mezencev, N, Tsukanov, V, Sozinov, G, Shkaruba, V, 2016. Superconducting solenoid for superfast Thz spectroscopy.
  23. Brandt, B, Hannahs, S, Schneider-Muntau, H, Boebinger, G & Sullivan, N, 2001. The national high magnetic field laboratory.
  24. Brunk, W & Walz, D, 1975. A new pulse magnet design utilising tape wound cores.
  25. Burgess, P, 2009. Variation in Light intensity at different latitudes and seasons, effects of cloud cover and the amounts of direct and diffused light.
  26. Cambell, 2011. An introduction to Numerical Methods in Superconductors.
  27. Chang, H & Wang, L , 2010. A Simple Proof of Thue’s Theorem on Circle Packing.
  28. Chao, C & Grantham, C, 2006. Design Optimisation for a Superconducting Solenoid of High Temperature Superconductor Tape for Energy Storage Purposes.
  29. Chao, C & Grantham, C, 2004. Iron Cored High Temperature Superconducting inductors for large Electric Power Applications.
  30. Charifoulline, Z, 2006. Residual resistivity ratio (RRR) measurements of LHC superconducting NbTi cable strands.
  31. Chen, W & Saleeb, A, 1994. Constitutive Equations for Engineering Materials, Volume II: Plasticity and Modelling.
  32. Cho, H, Kim, C, Lee, J & Han, H, 2011. Design and characteristic analysis of small scale magnetic levitation and propulsion system for maglev train application.
  33. Choi, J, Kim, S K, Kim, S, Sim, K, Park, M, & Yu, I K, 2016. Simulation and Experimental Demonstration of a Large Scale HTS AC Induction Furnace for Practical Design.
  34. Cohon, J, 1978. Multiobjective programming and planning.
  35. Conway, B, 1999. Electrochemical supercapacitors: Scientific Fundamentals And Technological Applications.
  36. Cravero, J, Maire, G & Royer, J, 2007. High current capacitor discharge power converters for the magnetic lenses of a neutrino beam facility.
  37. Dahlerup-Peterson, K, Kazmine, B, Popov, V, Sytchev, L, Vassiliev, L, Zubko, V, 2000. Energy Extraction Resistors for the Main Dipole and Quadrupole Circuits of the LHC.
  38. Denz, R, Rodriguez-Mateos, F, 2001. Detection of Resistive Transitions in LJC Superconducting Components.
  39. Ding, H, Ding, T, Jiang, C, Xu, Y, Xiao, H, Li, L, Duan, X & Pan, Y, 2010. Design of Power Supplies for the Pulsed High Magnetic Field Facility at HUST.
  40. Ding, H, Jiang, X, Ding, T, Xu, Y, Li, L, Duan, X, Pan, Y & Herlach, F, 2010. Prototype test and manufacture of a modular 12.5 MJ capacitive pulsed power supply.
  41. Ding, H, Hu, J, Liu, W, Xu, Y, Jiang, C, Ding, T, Xianzhong, D & Pan, Y, 2012. Design of a 135 MW Power Supply for a 50 T Pulsed Magnet.
  42. Ding, H, Jiang, C, Xu, Y, Ding, T, Zou, X, Li, L & Pan, Y, 2013. Test and operation of the WHMFC 12.6 MJ capacitor bank power supply systems.
  43. Ding, H, Yuan, Y, Xu, Y, Jiang, C, Li, L, Duan, X, Pan, Y & Hu, J, 2014. Testing and commissioning of a 135 MW pulsed power supply at the Wuhan National High Magnetic Field Centre.
  44. Ding, H, Ren, T, Xu, Y, Ding, T, Zhao, Z, Peng, T, Li, L, & Hu, J, 2016. Design and analysis of power supplies for the first 100T nondestructive magnet at the WHMFC.
  45. Ding, H, Zhao, Z, Zhou, J, Xie, J, Shi, J, Huan, Y, Wang, J, Wang, Q & Li, L, 2017. A flexible capacitive pulsed power supply to the high magnetic fields for the magnetisation measurement.
  46. Ding, H, Zhao, Z, Jiang, C, Xu, Y, Ding, T, Fang, X, Ren, T, Li, L, Pan, Y & Peng, T, 2018. Construction and Test of Three-Coil Magnet Power Supply System for a High-Pulsed Magnetic Field.
  47. Ding, T, Wang, J, Ding, H, Li, L, Liu, B & Pan, Y, 2012. A 35kA disc-shaped thyristor DC switch for batteries power supply of flat-top pulsed magnetic field.
  48. Ding, T, Lv, Y, Tang, J, chen, X, Li, L & Pan, Y, 2013. The design and tests of battery power supply system for pulsed flat top magnets in WHMFC.
  49. Ding, T, Ma, Y, Chen, H, Lv, Y, Han, X, Li, L & Pan, Y, 2014. Analysis & experiment of battery bank power supply system for long pulse helical magnet in WHMFC.
  50. Dolara, A, Faranda, R & Leva, S, 2009. Energy comparison of seven MPPT techniques for PV systems.
  51. Eyssa, Y, Markiewicz, W & Pernambuco-Wise, P, 1996. Plastic stress analysis of pulse and resistive magnets.
  52. Eyssa, Y, Walsh, R, Miller, J, Pernambuco-Wise, P, Bird, M, Schneider-Muntau, H, Boeing, H & Robinson, R, 1997. 25–30T water cooled pulsed magnet concept for neutron scattering experiment.
  53. Eyssa, Y, Walsh, R, Miller, J, Pernambuco-Wise, P, Bird, M & Schneider-Muntau, H, 1998. 2Hz, 30 T Split Pulse Water Cooled Magnet for Neutron Scattering Experiments.
  54. Fabry, C, 1898. Sur le champ magnétique au centre d’une bobine cylindrique et la construction de bobines galvanometers.
  55. Fahrni, C, Rufer, A, Bordy, F & Burnet, J, 2007. A novel 60MW pulsed power system based on capacitive energy storage for particle accelerators.
  56. Fartoukh, S & Brüning, O, 2001. Field quality specification for the LHC main dipole magnets.
  57. Frings, P, Witte, H, Jones, H, Beard, J & Hermannsdorfer, T, 2008. Rapid cooling methods for pulsed magnets.
  58. Fu, D, Lee, F, Qiu, Y & Wang, F, 2008. A novel high power density three-level LCC resonant converter with constant power-factor-control for charging applications.
  59. Galínski, M, Lewandowski, A & Stępniak, I, 2006. Ionic Liquids As Electrolytes.
  60. Ghaffari, M, Kinsman, W, Zhou, Y, Murali, S, Burlingame, Q, Lin, M, Ruoff, R & Zhang, Q, 2013. High Electrochemical Responses Of Ultra-High-Density Aligned Nano-Porous Microwave Exfoliated Graphite Oxide/Polymer Nano-composites Ionic Actuators.
  61. Ghaffari, M, Kosolwattana, S, Zhou, Y, Lachman, N, Lin, M, Bhattacharya, D, Gleason, K, Wardle, B & Zhang, Q, 2013. Hybrid Supercapacitor Materials From Poly(3,4-ethylenedioxythiophene) Conformally Coated Aligned Carbon Nanotubes.
  62. Ghaffari, M, Zhou, Y, Xu, H, Lin, M, Kim, T, Ruoff, R & Zhang, Q, 2013. Porous Microwave Exfoliated Graphite Oxide.
  63. Gharagheizi, F, Eslamimanesh, A, Mohammadi, AH, Richon, D, 2011. QSPR approach for determination of parachor of non-electrolyte organic compounds.
  64. Gieras, J, 1990. Linear Induction Motors.
  65. Gogotsi, Y & Simon, P, 2011. True Performance Metrics in Electrochemical Energy Storage.
  66. Goldberg, D, 1989. Genetic algorithms in search, optimisation and machine learning.
  67. Goodzeit, C, Ball, M & Meinke, R, 2003. The double helix dipole, a novel approach to accelerator magnet design.
  68. Gourlay, S, Ambrosio, G, Andreev, N, Anerella, M, Barzi, E, Bossert, R, Caspi, S, Dietderich, D, Ferracin, P, Gupta, R, Ghosh, A, Hafalia, A, Hannaford, C, Harrison, M, Kashikhin, V.S, Kashikhin, V.V, Lietzke, A, Mattafirri, S, McInturff, A, Nobrega, F, Novitsky, I, Sabbi, G, Schmazle, J, Stanek, R, Turrioni, D, Wanderer, P, Yamada, R & Zlobin, A , 2006. Magnet R&D for the US LHC accelerator research program.
  69. Graineri, P, Calvi, M, Xydi, P, Baudouy, Bocian, D, Bottura, L, Breshi, M, Seikmo, A, 2008. Stability analysis of the LHC cables for transient heat depositions.
  70. Griffiths, D, 1999. Introduction to Electrodynamics, 3rd ed.
  71. Grover, F, 1946. Inductance Calculations.
  72. Grössinger, R, Krichmayra, H, Sassik, H, Schwetz, M, Taraba, M & Frings, P, 1999. Austromag-a new high-field facility.
  73. Gualous, H, Bouquain, D, Berthon, A, Kauffmann, J, 2003. Experimental study of supercapacitor serial resistance and capacitance variations with temperature.
  74. Gualous, H, Louahlia-Gualous, H, Gallay, R, Miraoui, A, 2009. Supercapacitor thermal modeling and characterization in transient state for industrial applications.
  75. Guangwei, S, Meisinger, R & Gang, S, 2007. Modelling and Simulation of Shanghai Maglev Train Transrapid with Random Track Irregularities.
  76. Han, K, Ishmaku, A, Xin, Y, Garmestani, H, Toplosky, V, Walsh, R, Swenson, C, Lesch, B, Ledbetter, H, Kim, S, Hundley, M and Sims, J, 2002. Mechanical properties of MP35N as a reinforcement material for pulsed magnets.
  77. Haverkamp, M, 2003. Decay and Snap Back in Superconducting Accelerator Magnets.
  78. Henning, W, 2004. FAIR — An international accelerator facilitator.
  79. Herlach, F, 1999. Pulsed Magnets.
  80. Herlach, F & Miura, F, 2003. High Magnetic Fields Science & Technology — Controlled Waveform Magnets.
  81. Herlach, F, Peng, T & Vanacken, J, 2006. Experimental and theoretical analysis of the heat distribution in pulsed magnets.
  82. Holland, J, 1975. Adaptation in natural and artificial systems.
  83. Holland, J, 1992. Genetic algorithms.
  84. Huang, Y, Frings, P & Hennes, E, 2002. Mechanical properties of zylon/epoxy composites.
  85. Hung, K, Masarapu, C, Ko, T & Wei, B, 2009. Wide-temperature Range Operation Supercapacitors From Nanostructured Activated Carbon Fabric.
  86. Hurley, W, Duffy, M, Zhang, J, Lope, I, Kunz, B & Wölfle, W, 2015. A Unified Approach To The Calculation Of Self And Mutual Inductance For Coaxial Coils In Air.
  87. Iwasa, Y, 1994. Case studies in superconducting magnets.
  88. Izadi-Najafabadi, A, Yasuda, S, Kobashi, K, Yamada, T, Futaba, D, Hatori, H, Yumura, M, Ilijima, S & Hata, K, 2010. Extracting The Full Potential Of Single-Waller Carbon Nanotubes As Durable Supercapacitor Electrodes Operable At 4V With High Power And Energy Density.
  89. Jain, A, Ganetis, G, Gosh, A, Wing, L, Marone, A, Thomas, R & Wanderer, P, 2008. Field quality measurements at high ramp rates in a prototype dipole for the FAIR project.
  90. Jayawant, B, 1981. Electromagnetic suspension and levitation.
  91. Jones, H, Frings, P, von Ortenberg, M, Lagutin, A, van Bockstal, L, Portugall, O & Herlach, F, 2004. First experiments in fields about 75T in the European “coilin — coilex” magnet.
  92. Jones, H, Frings, P, Portugall, O, vonOrtenberg, M, Lagutin, A, Herlach, F & VanBrockstal, L, 2006. ARMS: A successful european program for an 80T user magnet.
  93. Kaiho, K, Namba, T, Ohara, T & Koyama, K, 1976. Optimisation of Superconducting Solenoid.
  94. Kang, C G, Seo, P K, Jung, H K, 2002. Numerical Analysis By New Proposed Coil Design Method In Induction Heating Process for Semi-Solid Forming and Its Experimental Verification With Globalisation Evaluation.
  95. Kapitza, P, 1938. Viscosity of liquid helium below the lambda point.
  96. Karhi, R, Wetz, D, Mankowski, J & Giesselmann, M, 2012. Theoretical and experimental analysis of breech fed and 40-distributed energy stage plasma arc railguns.
  97. Kaugerts, J, Moritz, G, Muehle, C, Ageev, A, Bogdanov, I, Kozub, Shcherbakov, P, Sytnik, V, Tkachenko, L, Zubko, V, Tommasini, D, Wilson, M & Hassenzahl, W, 2005. Design of a 6T, 1T/s fast-ramping synchrotron magnet for GSIs planned SIS300 Accelerator.
  98. Khan, M, Ali, A, Ali, H, Khattak, M & Ahmad, I, 2016. Designing Efficient Electric Power Supply System for Micro-Satellite.
  99. Kindo, K, 2001. 100T magnet developed in Osaka.
  100. Kircher, F, Levesy, B, Pabot, Y, Campi, D, Cure, B, Herve, A, Horvath, I, Fabbricatore, P & Musenich, R, 1999. Status report on the CMS superconducting solenoid for LHC.
  101. Kozub, S, Bogdanov, I, Seletsky, A, Shcherbakov, P, Syntik, V, Tkachenko, L, Zubko, V, 2006. Final Report on the Development Contract Technical Design of the SIS-300 Dipole Magnet.
  102. Kötz, R, Hahn, M & Gallay, R, 2006. Temperature Behaviour And Impedance Fundamentals Of Supercapacitors.
  103. Kunze, M, Jeong, S, Paillard, E, Winter, M & Passerini, S, 2010. Melting Behaviour Of Pyrrolidinium-Based Ionic Liquids And Their Binary Mixtures.
  104. Kunze, M, Montanino, M, Appetecchi, G, Jeong, S, Schonhoff, M, Winter, M & PAsserini, S, 2010. Melting Behaviour And Ionic Conductivity In Hydrophobic Ionic Liquids.
  105. La, J, Bae, K, Lee, S, Song, M, Nam, K and Jung, Y, 2016. Coil Design Optimisation for an Induction Evaporation Process: Simulation and Experiment.
  106. Lebrun, P, 2007. Advanced technology from and for basic science: superconductivity and superfluid helium at the large hadron collider, CERN.
  107. Lee, H, Kim, K & Lee, J, 2006. Review of maglev train technologies.
  108. Li, L, 1998. High performance pulsed magnets: Theory, design and construction.
  109. Li, L & Herlach, F, 1995. Deformation analysis of pulsed magnets with internal and external reinforcement.
  110. Li, L & Herlach, F, 1998. Magnetic and thermal diffusion in pulsed high field magnets.
  111. Li, Q, Lee, F & Jovanovic, M, 1999. Design considerations of transformer dc bias of forward converter with active-clamp reset.
  112. Lienhard, J, 2004. A Heat Transfer Textbook.
  113. Liu, K, Sun, R, Gao, Y & Yan, P, 2015. High voltage repetition-frequency charging power supply for pulsed laser.
  114. Liu, P, Verbrugge, M & Soukiazian, S, 2006. Influence Of Temperature And Electrolyte On The Performance Of Activated Carbon Supercapacitors.
  115. Liu, Q, Bo, H & Qin, B, 2010. Experimental Study & Numerical Analysis On Electromagnetic Force of Direct Action Solenoid Valve.
  116. Marglin, S, 1966. Objectives of water-resource development in Maass et al, ‘Design of water-resource systems’.
  117. Marshall, W, Swenson, C, Gavrilin, A & Schneider-Muntau, H, 2004. Development of fast cool pulse magnet coil technology at NHMFL
  118. Meß, K, H, Schmuser, P, Wolff, S, 1996. Superconducting accelerator magnets.
  119. Meyer, D & Flasck, R, 1970. A new configuration for a dipole magnet for use in high energy physics applications.
  120. Michalewicz, Z, 1996. Genetic Algorithms and data structures = evolution programs.
  121. Mirkhani, SA, Gharagheizi, F, Ilani-Kashkouli, P, Farahani, N, 2012. Determination of the glass transition temperature of ionic liquids: A molecular approach.
  122. Miyagawa, H, Mase, T, Sato, C, Drown, E, Drzal, L & Ikegami, K, 2006. Comparison of experimental and theoretical transverse elastic modulus of carbon fiber
  123. Montgomery, D & Weggel, R, 1980. Solenoid Magnet Design
  124. Moritz, G, 2004. Fast-pulsed SC magnets.
  125. Moritz, G, Muehle, C, Anerella, M, Ghosh, A, Sampson, W, Wanderer, P, Willen, E, Agapov, N, khodzhibagiyan, H, Kovalenko, A, Hassenzahl, W & Wilson, M, 2001. Towards fast pulsed superconducting synchrotron magnets.
  126. Motokawa, M, Hojiri, H, Ishihara, J & Ohnishi, K, 1989. Production of repeating pulsed high magnetic field.
  127. Nelson, W, 2004. Accelerated testing: Statistical models, test plans and data analysis.
  128. Nian, S, Tsai, S, Huang, M, Huang, R, Chen, C, 2014. Key Parameters and Optimal Design of a Single Layered Induction Coil for External Rapid Mold Surface Heating.
  129. Nilsson, J & Riedel, S, 2010. Electric Circuits, 9th ed.
  130. Nojiri, H, Motokawa, M & Takahashi, 2000. 30 T repeating pulsed field system for neutron diffraction.
  131. O’Connor, K & Curry, R, 2010. High Voltage characterisation of high dielectric constant composites.
  132. O’Connor, K & Curry, R, 2014. Recent Results in the Development of composites for High Energy Density Capacitors.
  133. Painter, T, Bole, S, Eyssa, Y, Dixon, I, Williams, V, Maier, S, Gundlach, S, Tozer, S, Hascicek, Y & Ammerman, C, 2000. Design of 30 T split pair pulse coils for LANSCE.
  134. Pantsyrnyi, V, Shikov, A, Vorobieva, A, Khiebova, N, Kozlenkova, N, Potapenko, I & Polikarpova, M, 2006. Stability aspects of the high strength, high conductivity microcomposite CuNb wires properties.
  135. Passerone, C, Tranchero, M, Speretta, S, Reyneri, L, Sansoé, C, Del Corso, D, 2008. Design Solutions for a university nano-satellite.
  136. Pech, D, Brunet, M, Durou, H, Huang, P, Mochalin, V, Gogotsi, Y, Taberna, P & Simon, P, 2010. Ultrahigh-power micrometer-sized supercapacitors based on onion-like carbon.
  137. Peng, T & Herlach, F, 2008. Design Principles for Optimised Pulsed Magnets.
  138. Peng, T, Li, L, Vanacken, J & Herlach, F, 2008. Efficient Design of Advanced Pulsed Magnets.
  139. Peng, T, Jiang, F, Sun, Q, Xu, Q, Xiao, H, Herlach, F & Li, L, 2014. Design and test of a 90T nondestructive magnet at Wuhan National High Magnetic Field Centre.
  140. Perenboom, J, Frings, P, Beard, J, Bansai, B, Herlach, F, Peng, T and Zherlitsyn, S, 2010. Optimisation of large multiple coil systems for pulsed magnets.
  141. Pilat, A & Turnau, A, 2010. Magnetic Levitation.
  142. Pilat, A & Zyla, M, 2013. Propulsion Control of the Semi Magnetically Levitated Cart.
  143. Pradhan, J, Bhunia, U, Roy, A, Panda, U, Bhattacharyya, T, Thakur, S, Khare, V, Das, M, Saha, S & Bandari, R, 2013. Basic Design and Test Results of High Temperature Superconductor Insert Coil for High Field Hybrid Magnet.
  144. Proudlock, P, Russenschuck, S & Zerlauth, M, 2004. LHC Magnet Polarities, Engineering Specification.
  145. Rabuffi, M & Picci, G, 2012. Status quo and future prospects for metallised polypropylene energy storage capacitors.
  146. Rechenberg, I, 1973. Evolutionsstrategie: Optimierung technischer systeme nach prinzipiender biologischen evolution.
  147. Reed, C & Cichanowski, S, 1994. The fundamentals of aging in HV polymer film capacitors.
  148. Rios, J, Roascio, D, Reyneri, L, Sansoé, Passerone, C, Corso, D, Bruno, M, Hernandez, A, Vallan, A, 2011. ARAMIS: A fine grained modular architecture for reconfigurable space missions.
  149. Roeland, L, Gersdorf, R & Mattens, W, 1989. The 40-T facility of the University of Amsterdam.
  150. Russenschuck, S, 2010. Field Computation for Accelerator Magnets.
  151. Schillig, J, Boenig, H, Gordon, M, Mielke, C, Rickel, D & Sims, J, 2000. Operating experience of the United States’ national high magnetic field laboratory 60T long pulse magnet.
  152. Schimpf, P, 2013. A detailed explanation of solenoid force.
  153. Schneuwly, A, Groning, P & Schlapbach, L, 1998. Breakdown behaviour in oil impregnated as dielectric in film capacitors.
  154. Schwefel, H, 1977. Numerische optimierung von computer-modellen mittels der evolutionsstrategie.
  155. Seo, H, Lim, J, Choe, G, Choi, J & Jeong, J, 2018. Algorithm of Linear Induction Motor Control For Low Normal Force Of Magnetic Levitation Train Propulsion System.
  156. She, W, 2011. The Improved Electromagnetic Equations And Superconductivity.
  157. Shi, J, Han, X, Xie, J & Li, L, 2016. Analysis and Design of a Control System for the 100T Pulsed High Magnetic Field Facility at WHMFC.
  158. Sides, C & Martin, C, 2005. Nanostructured Electrodes And The Low-Temperature Performance Of Li-Ion Batteries.
  159. Silvester, P & Ferrari, R, 1996. Finite Elements for Electrical Engineers.
  160. Simon, P & Gogotsi, Y, 2008. Materials For Electrochemical Capacitors.
  161. Simon, P, Gogotsi, Y & Dunn, B, 2014. Where Do Batteries End And Supercapacitors Begin?
  162. Skourski, Y, Herrmannsdorfer T, Sytcheva, A, Wosnitza, J, Wustmann, B and Zherlitsyn, S, 2008. Finite element simulation and performance of pulsed magnets.
  163. Sonnemann, F, 2001. Resistive transition and protection of LHC superconducting cables and magnets.
  164. Stekly, Z, Zar, J, 1965. Stable superconducting coils.
  165. Swenson, C, Marshall, W, Gavrilin, A, Han, K, Schillig, J, Sims, J & Schneider-Mantau, H, 2004. Development of ‘Fast Cool’ pulsed magnet coil technology at NHMFL.
  166. Swenson, C, Gavrilin, A, Han, K, Walsh, R, Schneider-Muntau, H, Rickel, D, Schillig, J, Ammerman, C & Sims, J, 2006. Performance of 75T prototype pulsed magnet.
  167. Swenson, C, Rickel, D & Sims, J, 2008. 80T magnet operational performance and design implications.
  168. Sun, C & Juang, J, 2012. Design & implementation of a microsatellite electric power subsystem.
  169. Takamura, T, Sato, Y & Sato, Y, 2011. Capacitance Improvement Of Supercapacitor Active Material Based On Activated Carbon Fibre Working with A Li-Ion Containing Electrode.
  170. Taylor, D, 1984. On the mechanism of aluminium corrosion in metallised film AC capacitors.
  171. Thornton, R, Clark, T & Perreault, B, 2004. Linear synchronous motor propulsion in small transit vehicles.
  172. Tilley, D & Tilley, J, 1990. Superfluidity and Superconductivity.
  173. Timoshenko, S, 1956. Strength of materials, Part II, Elementary Theory and Problems.
  174. Vanacken, J, Li, L, Rosseel, K, Boon, W & Herlach, F, 2001. Pulsed Magnet Design Software.
  175. Van Bockstal, L, Heremans, G & Herlach, F, 1991. Coils with fibre composite reinforcement for pulsed magnetic fields in the T50–75 range.
  176. Van Sciver, S, 1986. Helium Cryogenics.
  177. Verweij, A, 2006, CUDI: A model for Calculation of Electrodynamic and Thermal Behaviour of Superconducting Rutherford Cables.
  178. Vinciarelli, P, 1984. Optimal resetting of the transformers core in single ended forward converters.
  179. Wang, Y, Shi, Z, Huang, Y, Ma, Y, Wang, C, Chen, M & Chen, Y, 2009. Supercapacitor Devices Based On Graphene Materials.
  180. Welsby, V, 1960. The Theory and Design of Inductance Coils.
  181. Wanderer, P, Anerella, M, Ganetis, G, Ghosh, A, Joshi, P, Marone, A, Muratore, J, Schmalle, J, Soika, R, Thomas, R, Kaugerts, J, Moritz, G, Hessenzahl, W & Wilson, M, 2003. Initial test of a fast-ramped superconducting model dipole for GSIs proposed SIS200 accelerator.
  182. Weise, T, Hofmann, J, Anderson, R, Jorling, J, Kerschke, R, Hermannsdorfer, T & Krug, H, 2004. The capacitive 49 MJ pulsed power supply system for the high magnetic field laboratory at FZ-Rossendorf.
  183. White, M, 2006. Viscous fluid flow.
  184. Wilson, M, 1983. Superconducting magnets.
  185. Wilson, M, 2008. NbTi superconductors with low ac losses: a review.
  186. Wilson, M, Ghosh, A, Ten Haken, B, Hassenzahl, W, Kaugerts, J, Moritz, G, Muehle, C, DenOuden, A, Soika, R, Wanderer, P & Wessel, W, 2003. Cored Rutherford cables for the GSI fast-ramping synchrotron.
  187. Wright, J, Lee, D, Mohan, A, Papou, A, Smeys, P & Wang, S, 2010. Analysis of Integrated Solenoid Inductor With Closed Magnetic Core.
  188. Wu, L, Lu, K & Xia, Y, 2018. Mutual Inductance Calculation Of Two Coaxial Solenoid Coils With Iron Core.
  189. Xiong, G, Meng, C, Reifenberger, R, Irazoqui, P & Fisher, T, 2014. A Review Of Graphene Based Electrochemical Microsupercapacitors.
  190. Xiong, G, Kundu, A & Fisher, TS, 2015. Thermal Effects In Supercapacitors.
  191. Yuan, C, Zhang, X, Wu, Q & Gao, B, 2006. Effect Of Temperature On The Hybrid Supercapacitor Based On NiO And Activated Carbon With Alkaline Polymer Gel Electrolyte.
  192. Zhang, F, Zhang, T, Yang, X, Zhang, L, Leng, K, Huang, Y & Chen, Y, 2013. A High Performance Supercapacitor-Battery Hybrid Energy Storage Device Based On Graphene-Enhanced Electrode Materials With ultrahigh Energy Density.
  193. Zhang, H, 2013. Concepts of linear regulator and switching mode power supplies.
  194. Zhao, L, Hu, Y, Li, H, Wang, Z & Chen, L, 2011. Porous Li(4)Ti(5)O(12) Coated With N-Doped Carbon From Ionic Liquids For Li-Ion Batteries.
  195. Zherlitsyn, S, Bianchi, A, Hermannsdorfer, T, Pobell, F, Skourski, Y, Sytcheva, A, Zvyagin, S & Wosnitza, J, 2006. Coil design for non destructive pulsed-field magnets targeting 100T.
  196. Zherlitsyn, S, Herrmannsdorfer, T, Skourski, Y, Sytcheva, A & Wosnitza, J, 2007. Design of non-destructive pulsed magnets at the HLD.
  197. Zherlitsyn, S, Herrmannsdorfer, T, Wurstmann, B & Wosnitza, J, 2010. Design and performance of nondestructive pulsed magnets at the Dresden High Magnetic Field Laboratory.
  198. Zhou, J, Ding, H, Liu, Y, Zhao, Z, Huang, Y, Fang, X & Wang, Q, 2016. A High Power Charging Power Supply For Capacitor in Pulsed Power System.
  199. Zhou, Y, Ghaffari, M, Lin, E, Parsons, E, Liu, Y, Wardle, B & Zhang, Q, 2013. High Volumetric Electrochemical Performance Of Ultra-High Density Aligned Carbon Nanotube Supercapacitors With Controlled Nanomorphology.
  200. Zhou, Y, Lachman, N, Ghaffari, M, Xu, H, Bhattacharya, D, Fattahi, P, Abidian, M, Wu, S, Gleason, K & Wardle, B, 2014. A High Performance Hybrid Asymmetric Supercapacitor Via Nano-Scale Morphology Control Of Graphene, Conducting Polymer And Carbon Nanotube Electrodes.
  201. Zhou, Y, Xu, H, Lachman, N, Ghaffari, M, Wu, S, Liu, Y, Ugur, A, Gleason, K, Wardle, B & Zhang, Q, 2014. Advanced Asymmetric Supercapacitor Based On Conducting Polymer And Aligned Carbon Nanotubes With Controlled Nanomorphology.
  202. Zhou, Y, Ghaffari, M, Lin, M, Xu, H, Xie, H, Koo, C & Zhang, M, 2018. High Performance Supercapacitor Under Extremely Low Environmental Temperature.

#BonusPage — Advanced Use Case

--

--

--

The Railroad To Mars — Start-Up Interorbital Transport Service. https://h-industries.io

Love podcasts or audiobooks? Learn on the go with our new app.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
H. Industries

H. Industries

The Railroad To Mars — Start-Up Interorbital Transport Service. https://h-industries.io

More from Medium

Innovations Embedded into the Strategy of IT Outsourcing Company

To Providers of The Future: We’re Growing Urgent Care 25% by 2025

Stratus’ Focus on Edge Computing Innovation Nets Industry Recognition and Market Adoption — Stratus

What are Probabilistic Programming Languages and why they might be useful for you

Our model consists of a categorical logit distribution for the discrete valued observations. The linear predictors for the probabilities of each of the categories depend on parameters beta. We assign a normal prior, of zero mean and standard deviation 5 to each element of the parameter vector beta.